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Abstract

Model simulated soil moisture fields are often biased due to errors in input parameters
and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved
appropriately, represent the spatial mean of soil moisture in a footprint area, and can
be used to reduce model bias (at locations near the surface) through data assimilation5

techniques. While assimilating the retrievals can reduce model bias, it can also destroy
the mass balance enforced by the model governing equation because water is removed
from or added to the soil by the assimilation algorithm. In addition, studies have shown
that assimilation of surface observations can adversely impact soil moisture estimates
in the lower soil layers due to imperfect model physics, even though the bias near the10

surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass
conservation updating scheme was developed to assimilate the actual value of Ad-
vanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve
the mean of simulated soil moisture fields by the Noah land surface model. Assimi-
lation results using the conventional and the mass conservation updating scheme in15

the Little Washita watershed of Oklahoma showed that, while both updating schemes
reduced the bias in the shallow root zone, the mass conservation scheme provided
better estimates in the deeper profile. The mass conservation scheme also yielded
physically consistent estimates of fluxes and maintained the water budget. Impacts of
model physics on the assimilation results are discussed.20

1 Introduction

Soil moisture plays an important role in the energy and water exchange between the
atmosphere and the land surface, as well as in agricultural applications and water re-
source management. Model simulated soil moisture fields are often biased due to
uncertainties in model input parameters and model physics. The existence of model25

bias can be seen in several model inter-comparison studies which showed that model
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estimated soil moisture is significantly different from each other, even when identical
forcing data are used (Wood et al., 1998; Mitchell et al., 2004). Recognizing the signif-
icant disparity between the models, Mitchell et al. (2004) concluded that there was a
‘stringent need for good absolute states of soil moisture.’ Reducing the bias in model
estimated soil moisture fields has been shown to have a positive impact on other phys-5

ical processes. Dirmeyer (2000) demonstrated that the rainfall patterns and the near
surface air temperature can be improved by using a mean soil moisture data set derived
from a global soil moisture data bank.

Satellite derived soil moisture retrievals represent the spatially averaged soil mois-
ture in a footprint area (Njoku et al., 2003). If retrieved appropriately, they can be used10

to improve the spatial mean of the modeled soil moisture field as well as the temporal
mean through continuous assimilations in time. While interests in assimilating satellite
retrieved soil moisture estimates began more than a decade ago (Houser et al, 1998;
Walker et al., 2001; Margulis et al., 2002), recent studies have focused on using the
anomaly information extracted from the sensor data by removing the mean of the ob-15

servations priori to assimilation to improve model’s anomaly detection (Reichle et al.,
2007; Crow and Zhan, 2007; Bolten et al., 2008; Draper et al., 2009). While assimila-
tion of anomalies does not directly address if models are unbiased which is required
for optimal estimators (Kalnay, 2003), it preserves the water budget of forecasts.

An alternative to the offline bias-removal technique, as those used in the above stud-20

ies, is to estimate the forecast bias online by adding a bias state in the filtering process
(Keppenne et al., 2005; De Lannoy et al., 2007a, b). De Lannoy et al. (2007a, b) com-
pared the performance of several online bias correction techniques with the standard
EnKF using the CLM land model and profile soil moisture observations. Their results
showed that the online bias correction techniques, on average, yielded slightly more25

reductions in root mean square error. One major obstacle for applying this approach
in assimilating satellite retrieved soil moisture is that observations are only available at
the surface which makes it very challenge to estimate the bias state in the deeper pro-
file. When bias is not correctly estimated, assimilation may lead to unbalanced water
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budget as the assimilation may change the mean of simulated soil moisture fields. Lack
of water budget closure is a weak point for many data assimilation systems as pointed
out by Pan and Wood (2006), perhaps more so for land surface models whose major
goal is to partition the total water budget, precipitation, into different physical processes
such as evapo-transpiration (ET) and runoff.5

When sensor data are less biased (relative to the truth) than model estimates, they
can be used to reduce uncertainty in model estimates. Recognizing this potential ,
studies have been conducted to assimilate actual values of satellite data without using
any bias correction techniques (Houser et al., 1998; Walker et al., 2001; Margulis et
al., 2002; Ni-Meister et al., 2006). While the bias reduction at the surface was achieved10

in these studies, improvements in the deeper soil layers did not always occur. Houser
et al. (1998) and Walker et al. (2001) showed that assimilation of surface observations
actually adversely impacted the soil moisture state in the lower soil layers. The rep-
resentation of the hydrological condition in the lower soil zone is often a weak point
in land surface models due to lack of knowledge and observations. If model physics15

is flawed, it may adversely impact the outcome of data assimilation, especially for an
EnKF which relies on model physics to calculate the Kalman gain matrix dynamically
(Keppenne et al., 2000).

The objective of this study is to assimilate the actual value of AMSR-E soil mois-
ture retrievals into the Noah land surface model to improve the mean of simulated soil20

moisture fields using an EnKF. To overcome the potential bias issue associated with
both the model and the AMSR-E retrieval, a mass conservation updating scheme was
developed to allow the upper soil layers updated using the conventional EnKF while the
lower layers are updated with an equation that conserves mass of the forecast. This
study differs from those recent studies on AMSR-E data assimilation (Reichle et al.,25

2007; Crow and Zhan, 2007; Bolten et al., 2008; Draper et al., 2009) in that AMSR-E
retrievals were not pre-processed priori to assimilation while, in the other studies, the
mean of retrievals were removed through matching the cumulative distribution func-
tions (Reichle and Koster, 2004; Drusch et al., 2005). By assimilating the actual value
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of AMSR-E soil moisture, the objective of this study is to reduce forecast bias and es-
timation errors, rather than to improve anomaly detections (e.g., Reichle et al., 2007).
In Sect. 2, the experiment site, data, and the Noah model are briefly described. Details
of the mass conservation assimilation method along with the conventional EnKF are
described in Sect. 3. Assimilation results including all land surface fluxes and water5

budgets are presented in Sect. 4. Impacts of model physics on model simulation and
assimilation results and the limitations of the mass conservation scheme are discussed
in Sect. 5.

2 Experiment site, data and model

2.1 Study area and ground validation data10

The Little Washita watershed, located in southwestern Oklahoma, was chosen as the
study site primarily for its abundance of in situ soil moisture measurements. With an
area of 611 km2, the watershed is one of the two Micronet sites maintained by the
USDA Agriculture Research Service (ARS) for hydrological and meteorological ob-
servations (http://ars.mesonet.org). Figure 1 shows the watershed boundary and the15

locations of the ARS stations. At each station, hourly soil moisture and temperature
measurements are taken at 5, 25 and 45 cm depths below the surface, in addition to
surface measurements such as precipitation. Figure 1 also shows the only Soil Climate
Analysis Network (SCAN) station located within the watershed (Schaefer et al., 2007;
http://www.wcc.nrcs.usda.gov/scan/). The SCAN site complements the ARS stations20

in that it provides soil moisture measurements at the 100 cm depth which were used to
verify simulated soil moisture in the deeper soil profile. Daily stream flow data recorded
at the watershed by USGS (see Fig. 1 for the location of stream site 07327550) were
used for validating model predicted runoff. Latent heat measurements from the South-
ern Great Plain (SGP) main station (http://public.ornl.gov/ameriflux) were used for val-25

idating the simulated latent heat. Although SGP, which is approximately 200 km north
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of Little Washita, is not located near the watershed, it is the nearest site where flux data
are publically available.

2.2 AMSR-E retrievals

The AMSR-E soil moisture product produced by the NOAA’s National Environmental
Satellite, Data and Information Service (NESDIS) was used in this study. The soil mois-5

ture retrievals, based on the X-band brightness temperature measurements, were ob-
tained through the inversion of the Single Channel Retrieval algorithm with the MODIS
vegetation water content as an auxiliary variable (Zhan et al., 2008; Jackson, 1993).
Zhan et al. (2008) showed that this version of AMSR-E generally has larger dynamic
ranges than the official AMSR-E product (Njoku et al., 2003) even though both prod-10

ucts show strong temporal correlations (Crow and Zhan, 2007). The spatial resolution
of AMSR-E retrievals is about 25 by 25 km after re-sampling from its original sensor
data (Njoku et al., 2003). The experiment site contains about 5 to 6 AMSR-E pixels at
any observation time. On average, there are 1∼ 2 retrievals per day at any given lo-
cation and both ascending and descending data were assimilated at the retrieval time,15

except in areas of dense vegetation or frozen grounds.
The sensing depth of the AMSR instrument is believed to be about 1–2 cm from

the surface for the frequency range of AMSR-E (Njoku et al., 2003). This depth is
shallower than the ARS surface measurement (5 cm) and the center of Noah’s surface
layer. However, without reliable methods to extrapolate the AMSR-E estimates, it was20

assumed that the AMSR-E soil moisture retrieval is representative of soil moisture in
the top 5 cm soil and therefore was assimilated into Noah’s top layer directly. This
approximation could bring some bias into the retrievals used for data assimilation.

2.3 The Noah land surface model, forcing and input parameters

The Noah land surface model (version 2.7.1) is used operationally at the NOAA’s Na-25

tional Centers for Environmental Prediction for coupled weather and climate modeling.
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The soil moisture simulation in Noah is based on the one-dimensional Richards equa-
tion (Chen et al., 1996; Ek et al., 2003):

∂θ(z,t)
∂t

=
∂
∂z

(D(θ)
∂θ(z,t)
∂z

+K (θ))+P −R−E (1)

where θ is the soil moisture content; K is the hydraulic conductivity; D is the water
diffusivity, which is defined as K∂ψ /∂θ, where ψ is the matric potential; P is the pre-5

cipitation; R is the surface runoff; E is the ET; z is the vertical dimension with upward
as the positive direction; t is the time.

Following the operational version of Noah (Ek et al., 2003), four soil layers with thick-
nesses of 10, 30, 60 and 100 cm were used in this experiment. The top two layers,
a thin surface layer and the shallow root zone, generally show stronger and faster in-10

teractions with the atmospheric forcing. The third and the fourth layers represent the
deeper root zone and water storage, respectively.

Equation (1) is solved with the following boundary condition at the 200 cm lower
boundary:

q|z=200 cm =−K (2)15

where q is the subsurface runoff or base flow. Equation (2) is also referred to as the
free drainage condition, meaning gravity is the only force pushing water downward
(so the negative sign) and no upward diffusive movement is allowed across the lower
boundary (Jury et al., 1991). The use of free drainage is very common in land surface
models because it does not require any knowledge about the soil moisture state or flux20

in the subsurface which is impossible to obtain for large-scale modeling.
Noah uses the Campbell (1974) model to describe the nonlinear relationship be-

tween the conductivity and soil moisture:

K =Ks(
θ
θs

)2b+3 (3)

where Ks is the saturated conductivity; θs is the saturated water content; b is a fitting25

parameter. The US general soil texture classes (STATSGO) and a look-up table, based
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on a unified soil hydraulic parameter set (Mitchell et al., 2004), were used to provide soil
hydraulic parameters needed for solving Eq. (1). Hydraulic conductivity usually exhibits
the property of a log-normal distribution and is positive skewed (Cosby et al., 1984).
As a result, the subsurface runoff calculated using Eq. (2) is non-Gaussian which can
lead to unrealistic ensemble mean values in an EnKF when larger ensemble spreads5

occurred in the lowest soil layer (Ryu et al., 2009; De Lannoy et al., 2007a).
Model simulations were carried out in the NASA’s Land Information System (LIS,

version 5.0) which is a software interface between various land surface models and
forcing/static parameter fields (Kumar et al., 2006). LIS is also equipped with a one-
dimensional EnKF (Kumar et al., 2008) which will be described in the next section. The10

Noah model was integrated on a 0.01 degree grid so that spatial variability was well
represented in model estimated soil moisture and flux at the watershed. To avoid the
model spin up issue (Rodell et al., 2005; Cosgrove et al., 2003a), the initial soil mois-
ture conditions used were extracted from the output of Global Land Data Assimilation
(GLDAS)/Noah model which have been continuously integrated since 1979 (Rodell et15

al., 2004).
Model simulations were driven by forcing data (including precipitation, radiation,

wind, and temperature fields) from the NOAA/NCEP Global Data Assimilation System
(GDAS, Derber et al., 1991; Rodell et al., 2004). Basin-averaged monthly GDAS and
ARS precipitation for the simulation period (2006–2007) are compared in Fig. 2 and20

their annual precipitation amounts are listed in Table 1. Despite some underestimated
and overestimated events in the GDAS forcing data, both data sets showed that 2006
is a drier year than 2007.

3 Data assimilation methods

In this section, the conventional EnKF and the mass conservation EnKF scheme are25

described. EnKF is a widely used technique for assimilating observations into numer-
ical models to improve model estimates (e.g. Evensen and van Leeuwen, 1996; Crow
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and Wood, 2003; Keppenne et al., 2000; Pan and Wood, 2006; Reichle et al., 2007).
EnKF is especially suited for a non-linear system since the error covariance, used for
passing observation information from data-rich zones to data-poor zones, is calculated
through an ensemble of model states (Evensen and van Leeuwen, 1996). An EnKF
usually consists of two steps: the forecast step where an ensemble of model forecasts5

are obtained and propagated forward in time with perturbations added for forcing and
state variables, and the update step where an analysis is obtained using an update
equation when observations become available. The model forecast can be expressed
as:

X
f
t =M(Xat−1,F,U) (4)10

where X is the vector containing the four state variables of soil moisture of Noah; M
represents the Noah model; F represents all the forcing fields such as precipitation and
radiation; U represents static input parameters such as soil hydraulic parameters; and
t indicates the time step. The superscript (f ) indicates results for the forecast and (a) for
the analysis. Although not explicitly noted, Eq. (4) and the following update equations15

are valid for each ensemble member. The conventional EnKF updating scheme for
obtaining the analysis can be written as:

X
a
t =X

f
t +K(vt−HX ft ) (5)

Where K is the Kalman gain matrix computed from the ensemble statistics of the model
simulated soil moisture fields (Keppenne, 2000); v is the observation (AMSR-E re-20

trievals in this study); H is the observation operator that relates the observation to the
model state and is [1, 0, 0, 0] in this study because the observation is the same type as
the model state and is only available at the surface layer. The AMSR-E retrievals were
used without downscaling, i.e., all model grid points within the footprint of the satel-
lite were given the same retrieved soil moisture value, which is equivalent to a priori25

partition of the large scale retrieval to the finer scale with the same value assigned to
each grid cell. This approach allows for direct and efficient assimilation of satellite re-
trievals using the current infrastructure of LIS. It is justified for the purpose of this study
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which is to improve the spatial mean of simulated soil moisture fields and will not be
an issue for larger scale simulations where model resolutions can be made to match
that of AMSR-E. Since observations are only available at the surface, the innovation,
(v-HXf ), is a scalar. The K matrix propagates the innovation downwards to obtain the

increment, K(v−HXf ), for all lower layers.5

When both the model and the observation are unbiased, the mean of the innovation
(and increments) is zero. When either or both of them are biased, the analysis (Xa)
obtained through Eq. (5) may not possess the same mean as the forecast (Xf ) which is
enforced by the mass balance Richards equation. The CDF matching technique used
by previous studies (e.g., Reichle et al. 2007) renders the mean of the retrievals equal10

to that of the model and therefore preserves the mean of the forecast. The tradeoff
of this scaling approach is that it discards the mean value of retrievals which may be
useful in improving the mean of model estimates.

In order to assimilate the actual value of retrievals which may not have the same
mean as model estimates, the loss of water mass (relative to the forecast) needs to be15

handled in the updating scheme. Pan and Wood (2006) used a two-step constrained
Kalman filter to redistribute the mass imbalance caused by assimilating multiple types
of observations (ET, stream flow and soil moisture). When only the surface soil mois-
ture observation is available for assimilation, the redistribution of mass imbalance can
be carried out within the four soil layers. Specifically, while the top two layers are up-20

dated using Eq. (5), a different updating scheme can be used for the lower two layers:

Y
a
t =Y

f
t −

2∑
k=1

(∆Ckdk)/(d3+d4) (6)

where Y contains the soil moisture state of the lower two layers; d represents the
thickness of each soil layer; subscripts (k), (3), and (4) indicate the soil layer; ∆Ck rep-
resents the increment, i.e., water (in soil moisture content) lost or gained, for the top25

two layers when they are updated using Eq. (5). Equation (6) redistributes the mass
imbalance (amount of water) incurred in updating the top two layers to the lower layers
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and therefore, guarantees that the total water storage remains the same for each en-
semble member after the ensemble update. The division of layer thicknesses in Eq. (6)
is to convert the amount of water to volumetric soil moisture content to match the unit
of the state variable. Equation (6) is performed each time when the upper two layers
are updated so that the column water of the analysis remains the same as the forecast5

(but with a different soil moisture profile). By maintaining the water storage within a soil
column, the mass conservation scheme also preserves the long-term water budget of
the control run (without any data assimilation) since ET and runoff are calculated based
on the column water storage and perturbations added to the forcing and state variables
are unbiased. Because of the enforcement of mass conservation of the control run, this10

scheme (Eq. (5) for top two layers and (6) for the two lower layers) is referred to as the
mass conservation updating scheme. Note that no assumption was made about the
observation and the model, both of which can be biased, in deriving Eq. (6).

In addition to preserving mass, Eq. (6) avoids updating the lower layers with the
conventional EnKF which has been shown to yield undesired increments due to inap-15

propriate model physics (Houser et al., 1998; Walker et al., 2001). Preserving water
mass does not necessarily lead to improved soil moisture estimates in the lower layers,
but Eq. (6) keeps the increments small due to the larger thickness of lower two layers
relative to the upper two layers, and thus minimizes any potential adverse impacts.

The ensemble of model states was generated by adding zero-mean perturbations20

(errors) to the forcing fields and state variables to represent random errors in them.
Following Reichle et al. (2007), precipitation, long and short wave radiation fields which
have the largest impact on soil moisture were perturbed using the same parameters
given by Reichle et al. (2007) as the same forcing data were used in both studies. Per-
turbations for precipitation and shortwave radiation were assumed to be multiplicative25

and additive for longwave radiation. The perturbation frequency for these forcing fields
was 5.5 h.

Perturbations were also added to soil moisture variables to account for errors in
the input parameters such as soil hydraulic conductivity and model physics using
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parameters listed in Table 2. Smaller perturbations (in volumetric soil moisture con-
tent) were given to the lower two layers because of their larger thickness and the fact
that perturbations added in the top two layers can travel downward through the dynam-
ics of the Richards equation. In addition, the issue with the calculation of ensemble
mean base flow due to the skewness of the hydraulic conductivity function (De Lannoy5

et al., 2007a; Ryu et al., 2009) also requires smaller perturbations in the lower lay-
ers to ensure physically consistent ensemble runoff. All soil moisture variables were
assumed to have additive zero-mean Gaussian errors with vertical cross-correlations
among four layers given in Table 2. The perturbation frequency for soil moisture was
24 h. Noah Soil moisture moves very slowly in drier conditions, which is why the longer10

perturbation frequency was used to avoid ensemble bias. Despite all zero-mean per-
turbations, ensemble bias could still exist in the ensemble soil moisture field due to
the nonlinear relationship among various processes and the strong influence of model
physics. Parameters in Table 2 were chosen because they yielded unbiased ensemble
(without data assimilation) soil moisture fields relative to a single member control run.15

The 3 % AMSR-E error (Njoku et al., 2003) was used in the filter to account for errors
in the observation. The same filter parameters were used for both updating schemes.

4 Results

Three simulation runs were performed at the Little Washita watershed for the 2006 to
2007 period. The control run (Control), which represents the baseline performance of20

the Noah model, was driven by the GDAS forcing and all the parameter fields in their
unperturbed states. The other two simulations featured assimilations of AMSR-E soil
moisture retrievals using the conventional (DA) and mass conservation (DA MassCon)
updating schemes.

Given the objective of this study which is to improve the mean of model estimates,25

basin averaged daily bias and root mean square errors (rmse) were used to evalu-
ate the assimilation results. All statistics were calculated with respect to the ground
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validation data described in Sect. 2.

4.1 Soil moisture

Figure 3 shows the comparison of soil moisture in the four Noah soil layers from the
three simulations. The upper left panel also includes basin averaged AMSR-E soil
moisture retrievals and ARS measurements at the 5 cm depth. Overall, the AMSR-5

E soil moisture compares well with ARS by capturing the seasonal change and the
mean value of in situ measurements. The daily variation of AMSR-E is small due
to the twice per day (maximum) retrieval interval. Control also captured the wetting
and drying cycles of the surface soil moisture, exhibiting strong correlation with the
ARS measurements. However, it consistently overestimated the surface soil moisture10

throughout the simulation period, even in the period from December 2006 to June 2007
when GDAS underestimated the precipitation (see Fig. 2). The same overestimation
was also observed (not shown) when the model was driven by the North America
Land Data Assimilation System (NLDAS, Cosgrove et al., 2003b) forcing data which
yielded nearly unbiased monthly precipitation estimates against ARS measurements15

(not shown). These results indicate that the bias at the surface was not initiated by
errors in the precipitation forcing data. Figure 3 also shows that the overestimation by
Noah was more severe in winter periods when ET and precipitation were low, which
limits the likelihood that incorrect runoff and ET algorithms may have left excessive
water at the surface. Flux results that will be discussed in Sect. 4.2 also do not show20

any negative bias. In a separated study (to be submitted), NLDAS/Noah was compared
with SCAN soil moisture for the continental US and the similar overestimation was
found in the western US. The likely cause for this persistent overestimation in such
a large area may be the static parameters such as soil hydraulic conductivity. The
vertical drainage of soil moisture in Noah is controlled by the nonlinear function of soil25

hydraulic conductivity as shown in Eqs. (1) and (3). The parameters in Eq. (3) were
obtained through linear regressions (Cosby et al., 1984) which may not capture all the
nonlinear behaviors of hydraulic conductivity. If the hydraulic conductivity value is lower
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than expected in the drier range of soil moisture, it would explain why Noah failed to
drain soil moisture quickly in Little Washita and the western US.

DA and DA MassCon both greatly reduced the overestimation of Control in the sur-
face layer. The degree of correction is not even, especially in very wet conditions where
the assimilation failed to nudge the soil moisture towards the AMSR-E retrievals. This5

is because the perturbation parameters for the filter had to be tuned to work with the
driest condition in order to avoid ensemble bias. If overly perturbed to fit the need of
wetter conditions, ensemble bias would appear in drier periods because some of the
ensemble members would hit the lower bound of soil moisture (Reichle and Koster,
2002).10

Figure 3 also shows that both updating schemes decreased soil moisture in layer 2.
However, for layers 3 and 4, the two schemes acted differently. DA lowered the soil
moisture in layers 3 and 4 as it did with the top two layers. DA MassCon increased
the soil moisture in the lower layers because it captured the amount of water removed
from the top two layers in the lower layers. As shown in Fig. 4 which compares the15

simulations with in-situ soil moisture measurements at various measuring depths, DA
and DA MassCon both improved over Control at 25 and 45 cm by lowering the soil
moisture accordingly. But only DA MassCon improved over Control at 100 cm while DA
degraded the estimate by further lowering the soil moisture. Statistics in Table 3 show
that DA performed slightly better than DA MassCon in the upper three observation20

levels. But only DA MassCon achieved improvements in all four levels. Table 3 also
lists the statistics for the AMSR-E retrievals which are nearly unbiased relative to in situ
measurements, although the mass conservation scheme does not require retrievals to
be unbiased.

The improvement made by DA MassCon at 100 cm may be debatable due to the25

co-existence of the overestimation in the upper layers and the underestimation of soil
moisture in the lower layers, which is found to be true for the Noah model in the western
US. Houser et al. (1998) also showed the similar model behavior with a different model.
When the overestimation and underestimation do not occur concurrently, the mass
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conservation algorithm may not lead to improved soil moisture estimates in the lower
soil profile, but it does not cause significant changes (relative to Control) to the lower
soil moisture states, as seen in Fig. 3, because of the smaller increments given by
Eq. (6).

The conventional updating scheme generated increments with the same sign for all5

layers that significantly decreased soil moisture in the lower profile, a result not sup-
ported by in situ measurements at 100 cm. For Noah, the fact all increments have the
same sign is due to the free drainage condition which has to adjust the soil moisture in
the lower layers according to changes in the upper layers in order to maintain the down-
ward flow direction (see Eq. 2). Negatively cross-correlated soil moisture perturbations10

between the upper layers and lower layers were also tested for the conventional EnKF
(not shown). They did not change the sign of the increments but slightly lowered their
magnitudes, with the soil moisture estimates in the lower two layers slightly wetter than
those shown in Figs. 3 and 4 but still much worse (drier) than Control when compared
to in situ measurements. Cross-correlations of perturbations only partially influence the15

outcome of the increments which also strongly depend on model physics. As model
physics largely determines the mean behavior of soil moisture, it is difficult for the zero-
mean perturbations alone to overcome the large difference between DA and Control
seen in Fig. 4 (lower panel). Significantly increasing perturbations for soil moisture is
not permitted because it will lead to ensemble bias in soil moisture and base flow.20

Similar to surface overestimation, the underestimation by Control in the lower profile
cannot be explained by any precipitation forcing errors. In fact, the underestimation
is caused by the free drainage condition which drains excessive water away and pre-
vents moisture moving up from below the land surface. The incorrectness of the free
drainage condition is why the surface overestimation did not occur at 100 cm. The25

underestimation has also been observed with other models which employ the same
boundary condition (Zeng and Decker, 2009; Houser et al., 1998). This deficiency in
model physics is why the conventional EnKF cannot obtain increments favorable for
improvements in the lower profile. Presumably, the underestimation of soil moisture in
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the lower soil moisture profile could also be balanced out with base flow which would
require either deeper soil moisture measurements or observations of base flow to cre-
ate the innovation. With only the surface soil moisture observation available, the mass
conservation scheme elects to improve the soil moisture fields first and let the mass
conservation to constrain flux estimates.5

Figure 5 features the contour plot of the annual mean surface soil moisture at the
watershed. Control revealed that 2006 is drier than 2007, confirming the earlier anal-
ysis regarding GDAS precipitation (Fig. 2 and Table 1). NOAA AMSR-E retrievals also
captured the difference in annual precipitation, as DA and DA MassCon all show the
wetter soil moisture condition in 2007. DA MassCon yielded slightly higher soil mois-10

ture estimates than DA because the former has a wetter lower soil profile (see Fig. 3)
which pushed the surface soil moisture slightly higher via the capillary force. This is
why DA achieved slightly better statistics than DA MassCon for the upper three obser-
vation levels shown in Table 3. However, for the root zone soil moisture (consisting of
the upper three Noah soil layers), Fig. 6 shows that while DA MassCon and Control15

yielded the wetter soil moisture condition in 2007, DA struggled to show this variation
in annual precipitation, further confirming the failure of DA in updating the lower layers.

Figures 5 and 6 also show that the spatial variability of Control was generally pre-
served by the assimilation schemes even though the AMSR-E retrievals were assimi-
lated directly without any spatial downscaling. Note that spatial variability of soil mois-20

ture may be lost slightly at the assimilation time, but it recovered quickly afterwards
because of the high resolution soil and vegetation parameters.

4.2 Flux

One of the important roles of any land surface model is to simulate water and energy
fluxes based on soil moisture fields. Improvements on soil moisture do not necessarily25

lead to improvements in the calculation of flux because of imperfect model physics and
complex relationship among various processes. Therefore, it is important to examine
all components of model estimates to prevent unexpected flux estimates.
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Figure 7 shows the simulated latent heat fluxes in comparison with SGP observa-
tions. The differences among the three simulations are relatively small, with total ET
for the two-year period estimated at 1362, 1013 and 1147 mm, for Control, DA and DA
MassCon, respectively. Part of the reason is that the ET algorithm in Noah is more
sensitive to the vegetation greenness fraction than soil moisture (Chen et al., 1996). In5

addition, the watershed is mostly covered by vegetations with shallow root zone depths
such as shrubs and grasses which do not strongly depend on the soil moisture state in
lower profile where DA differs from DA MassCon the most. Nevertheless, Table 3 shows
that Control yielded the largest bias (positive) in latent heat estimation. DA reduced the
bias but DA MassCon produced the smallest bias. Although the improvement by DA10

MassCon and DA should not be overstated given that the SGP is not located near the
watershed, the impact of the different soil moisture fields on the latent heat estimation
is demonstrated.

Noah employs the Simple Water Balance (SWB) model by Schaake et al. (1996) to
partition the precipitation into surface runoff and infiltration. Soil moisture deficits in15

the entire profile and precipitation intensity are accounted for in the implementation of
SWB in Noah (Ek et al., 2003). Figure 8 (upper panel) shows that the three simulations
yielded very similar surface runoff. DA, which produced the driest soil moisture profile,
as expected, yielded the lowest surface runoff. The insensitivity of surface runoff to
soil moisture is probably due to the fact that there were no prolonged precipitation20

periods and that the soil in the basin remained relatively dry which left enough room
for infiltration.

On the other hand, the assimilation of AMSR-E has a much larger impact on base
flow as shown in Fig. 8 (lower panel). As mentioned early, Noah uses Eq. (2) to cal-
culate base flow which has a monotonic relationship with the soil moisture in layer 4.25

As a result, DA yielded the lowest base flow while DA MassCon generated the largest
base flow. Compared to Control, DA MassCon significantly increased base flow in win-
ter months when more corrections were made to the soil moisture fields. Notice that
DA generated significantly smaller amounts of base flow in 2007 than in 2006 which is
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relatively drier. Frequent rainfalls in 2007, which restored bias in the surface, means
more water was removed and not captured by DA. Overall, the assimilation results sup-
port the findings by Li et al. (2009) who concluded that the initial soil moisture condition
has a larger impact on base flow while precipitation uncertainty has a larger impact on
surface runoff.5

Additional information beyond surface runoff and base flow is required to compute
the stream flow for the watershed. In the western US where significant groundwater
recharges may occur, simple summation of base flow with surface runoff will lead to
overestimation of stream flow. Figure 9 (upper panel) shows the comparison of simu-
lated total runoff (surface runoff plus base flow) with the USGS stream flow data. The10

predicted total runoffs are much higher than gauged values, except the result by DA
in 2007. Based on the study by Schaller and Fan (2009), about 30 % of total runoff in
the Little Washita area contributes to the stream flow. Using this information, the simu-
lated stream flow, which was taken as 30 % of the total runoff, was plotted in the lower
panel of Fig. 9. The stream flow estimation by Control and DA MassCon now compare15

reasonably well with the gauge data. The significant overestimation of precipitation by
GDAS in August 2006 and the underestimations in June 2007 are noticeable in the
predicted stream flow. Bias in forcing data cannot be corrected through soil moisture
data assimilation since the forcing was assumed to be unbiased. While these compar-
isons do not constitute accurate validations (which is why no statistics were calculated20

for stream flow), they illustrate the potential impact of AMSR-E retrievals on runoff by
different algorithms. Note that the estimated monthly total runoff and stream flow in
Fig. 9 are simple aggregations of the estimated surface and subsurface runoff at all the
grid points within the basin. No routing algorithm or time delay was used in producing
them, which can be justified given the relatively smaller basin size and the large time25

scale.
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4.3 Water budget

As mentioned early, a unique challenge in assimilating remotely sensed data is that
the observation is only available for a thin surface layer. An assimilation method, which
may look successful based on the verification of soil moisture near the surface, may
fail in the lower soil zone. For instance, DA could have been declared a success based5

on the verification of soil moisture in the shallow root zone and the latent heat. Yet, it
degraded soil moisture estimates in the deeper soil profile that led to the deterioration
of base flow and failure to show annual precipitation changes in the root zone. Lack of
both complete observations and a full set of soil moisture constraints is the root cause
for this inconsistent conclusion. To avoid this problem a quality check, independent of10

any soil moisture measurement, is needed.
Water budget checks represent one way to ensure the assimilation results are phys-

ically consistent across all the processes. The water budget here is defined as the
sum of ET, surface runoff, base flow and the net change in column water, which is
essentially the precipitation amount. Since the forcing perturbations were assumed15

unbiased, the assimilation runs should produce the same water budget as Control in
time scales much longer than the perturbation frequency. To assess the overall perfor-
mance of the two assimilation methods, monthly GDAS precipitation and water budgets
from the three simulations are displayed in Fig. 10. While the difference between GDAS
precipitation and the water budget of Control is due to numerical errors associated with20

the discretization of the Richards equation, the difference between Control and the two
data assimilation runs can only be attributed to the Kalman filters. The failure of DA is
clearly evident because it does not have water budget closure in every month. Failure
to capture mass loss from the top two layers and the inappropriate update in the lower
layers contribute to the loss water budget. On the other hand, DA MassCon, in general,25

achieved monthly water balance throughout the two-year period. Some ensemble bias
still existed in DA MassCon in January and February of 2006 when the soil was so dry
that the perturbations used in the filter were probably slightly larger than needed.
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5 Discussion

This study demonstrates that modeled soil moisture fields are significantly biased due
to errors in static parameters such as soil hydraulic conductivity and inappropriate
model physics such as the free drainage condition. Satellite derived soil moisture data,
if retrieved appropriately, i.e., less biased, can be used to reduce the bias. However,5

the difference between the mean of model estimates and that of sensor data can also
lead to mass imbalance when the bias is corrected near the surface. In addition, since
satellite retrievals only represent information in the top few centimeters of the soil, effec-
tively passing the surface information to the deeper soil layers without causing adverse
impacts poses additional challenges.10

The mass conservation updating scheme developed in this study preserves the wa-
ter budget of the forecast (as well as the control) by transferring the mass imbalance
incurred in updating the top two layers to the lower layers. The development of this
scheme was largely based on analyses of model simulation results and considerations
of model physics. As reasoned in the result section, the overestimation at the surface is15

likely caused by the lower than expected hydraulic conductivity values, given the per-
sistent occurrence of overestimation, especially in winter periods when precipitation
and ET were very low. For this reason, moving the surface overestimation to the lower
layers via mass conservation is to mitigate the inaccuracy of model parameters. If the
surface bias was indeed caused by inadequacy in ET and surface runoff algorithms,20

redistributing mass imbalance back to these fluxes would require direct observations
of these variables and extensive knowledge about how each process contributes to the
bias (Pan and Wood, 2006). Precipitation errors could cause bias in soil moisture, but
they are not the major reason. As shown in Fig. 10 and stated in Sect. 3, the mass con-
servation scheme does not allow the water budget to change with the assimilation of25

the retrievals. While it is tempting to adjust water budget based on surface soil moisture
observations, the retrievals alone simply do not provide sufficient information for chang-
ing the water budget and may lead to erroneous results. Using Fig. 3 as an example,
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given the consistent positive bias in Control at the surface, if the water budget were
allowed to change with soil moisture data assimilation, the assimilation would always
lead to reduced water budgets, which would contradict with the precipitation validation
in Fig. 2 where GDAS actually overestimated precipitation or was nearly unbiased in
some months. This is part of the reason why DA failed to achieve monthly water bal-5

ance. With the limited information provided by the surface soil moisture observation,
the mass conservation scheme focuses on improving the soil moisture fields first. Re-
gardless of what initiated the bias at the surface, the mass conservation scheme will
improve soil moisture estimates in the upper layers if the observations are less biased
than the model, but the improvements in the lower layers may be model dependent10

and region dependent. But with the mass conservation constraint, the assimilated
lower soil moisture states are much more reliable (closer to Control), due to the smaller
increments given by Eq. (6), than those given by the conventional EnKF which may
yield significantly degraded results due to the strong reaction of the model physics (the
free drainage condition) to any update near the surface.15

Although it was found that updating the top two layers is more appropriate at Little
Washita, studies in different climate conditions are needed to examine how far the
surface measurements can influence the deeper soil layers through the conventional
EnKF without causing adverse impacts. A general form of Eq. (6) for a model with N
soil layers and the upper L layers are to be assimilated using the conventional EnKF is:20

Y
a
t =Y

f
t −

L∑
k=1

(∆Ckdk)/
N∑

j=L+1

dj (7)

and Y now contains the soil moisture states for layers L+1 to N. In general, the
fewer upper layers that are assimilated using the conventional EnKF, the less impact
the assimilation has on the rest of soil layers and fluxes.

The difficulty of using the surface observation to improve root zone soil moisture25

has also been reported by Walker et al. (2001) and Houser et al. (1998) who showed
that soil moisture estimates in the lower soil zone deteriorated with the assimilation
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of surface observations. As pointed out by Walker et al. (2001) that data assimila-
tion could only achieve what model physics is capable of delivering, the failure of the
conventional EnKF in updating the lower layers, as shown in this study, is a result of
inappropriate model physics. As shown in Figs. 3 and 4, Noah (the Control run) failed
to capture the trend of increasing wetness with depth as observed by in situ measure-5

ments. As a result, the conventional EnKF was not able to yield increments favoring the
improvements in the lower profile. Even for assimilation methods that do not depend on
model physics such as the least square and variational method (Kalnay, 2003), there
is probably a limit to how far the surface information can be extrapolated to improve
the soil moisture state in deeper soil zones. Houser et al. (1998) showed that a nudg-10

ing and a statistical interpolation method also caused similar detrimental effects on the
lower soil layer when surface observations were assimilated. Lack of observations in
the entire profile to constrain the increments is the root cause for these difficulties. The
mass conservation scheme avoids the interference of imperfect model physics for the
lower layers by using a model-independent updating equation that also preserves the15

mass of the forecast.
The reduction of bias in both upper and lower layers by DA MassCon changed the

soil moisture profile which is more aligned with in situ observations than with model
physics (Control). As mentioned in the introduction, simulated soil moisture fields from
different models exhibit significant disparities which have greatly affected their applica-20

tions in some areas. Mo (2008) showed that the correlations of model-based drought
indices are so low in the western US that they are not reliable for drought monitor-
ing. Assimilating the actual value of AMSR-E retrievals into these models can reduce
the uncertainty associated with model physics and should lead to more consistent soil
moisture fields and thus, more reliable model-based drought indices.25

With the current framework of LIS, parameter uncertainties are implicitly represented
in errors added to soil moisture variables, which is a common practice in many studies
(Reichle et al., 2007; De Lannoy et al., 2007a). Alternatively, parameters uncertainty
can be represented through directly perturbing parameters (Margulis et al., 2002; Ng
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et al., 2009; Qin et al., 2009). The assimilation results should remain similar as they
are determined by the relative error of the observation versus that of the model and
constrained by the observation and the control run. Perturbing parameters can also
be used to simultaneously retrieve model parameters as shown by Qin et al. (2009)
who retrieved surface soil moisture and soil texture parameters using a particle filtering5

technique. Their study showed that changes in initial conditions can lead to completely
different retrieved parameter values. Lack of constraints in parameters, particularly
the knowledge about their mean value, may be responsible for this behavior. For the
case studied here, the hydraulic conductivity is likely biased relative to the truth and
its uncertainty can hardly be represented by a zero-mean Gaussian process. Bias, in10

either parameters or state variables, is an important issue that needs to be considered
when assimilating real observations.

With the biased model shown in this study, the estimates by DA and DA MassCon
were not optimized, i.e., the estimation error was not minimized (Kalnay, 2003). The
same is true if the retrievals are scaled, priori to assimilation, using model climatology15

(Reichle and Koster, 2004; Drusch et al., 2005) because the model estimates (Control)
were still biased. For the example presented here, more reductions in the estimation
error for the surface layer can be obtained by directly inserting the AMSR-E retrievals
into the model, as Table 3 shows that AMSR-E retrievals have the smallest bias against
the ARS measurements. However, retrievals may not always be better than modeled20

estimates, in which case data assimilation will yield better estimates than direct inser-
tion. In addition, direct insertion is not as effective as an EnKF in reducing errors in
root zone soil moisture because data assimilation techniques can force the surface ob-
servation to impact the adjacent soil layer while direction insertion, relying on model
physics, may not be effective in passing the information downward (Crow and Wood,25

2003).
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Table 1. Annual precipitation (mm) at Little Washita in 2006 and 2007 by ARS and GDAS.

2006 2007

ARS 690 1259
GDAS 959 1096
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Table 2. Perturbations given to the four soil moisture variables and their cross-correlations (the
last four columns).

variable standard correlation cross-correlation cross-correlation cross-correlation cross-correlation
deviation in time with θ1 with θ2 with θ3 with θ4

θ1 0.002 12 h 1.0 0.6 0.4 0.1
θ2 5.0×10−4 12 h 0.6 1.0 0.5 0.2
θ3 6.0×10−5 12 h 0.4 0.5 1.0 0.4
θ4 6.0×10−6 12 h 0.1 0.2 0.4 1.0
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Table 3. Basin averaged bias and root mean square error (rmse) of daily simulated soil mois-
ture at the 5, 25, 45 and 100 cm depths, latent heat (W/m2) and NOAA NESDIS AMSR-E
soil moisture retrievals for the two-year period. Statistics were calculated with respect to daily
values of ground measurements at ARS, SCAN and SGP.

Control DA DA MassCon AMSR-E

bias rmse bias rmse bias rmse bias rmse

soil moisture (5 cm) 0.11 0.11 0.05 0.07 0.06 0.08 −0.002 0.05
soil moisture (25 cm) 0.10 0.10 0.03 0.06 0.04 0.07 – –
soil moisture (45 cm) 0.09 0.09 0.02 0.05 0.03 0.06 – –
soil moisture (100 cm) −0.10 0.11 −0.16 0.16 −0.09 0.09 – –

latent heat 8.27 28.87 −5.76 28.80 −0.33 28.38 – –
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 790 

 791 
 792 
 793 
Figure 1: The Little Washita watershed and the locations of ARS, SCAN and USGS stations. 794 
  795 

Fig. 1. The Little Washita watershed and locations of ARS, SCAN and USGS stations.
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 796 

Figure 2: Basin averaged monthly ARS and GDAS precipitation. 797 
 798 
 799 

Fig. 2. Basin averaged monthly ARS and GDAS precipitation.
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 800 
Figure 3: Time series of basin averaged daily soil moisture from Control, DA, and DA MassCon 801 
for Noah soil layers 1 to 4.  Simulated soil moisture at layer 1 is compared to basin averaged 802 
ARS measurements at the 5 cm depth and the AMSR-E retrievals. 803 

Fig. 3. Time series of basin averaged daily soil moisture from Control, DA, and DA MassCon
for Noah soil layers 1 to 4. Simulated soil moisture at layer 1 is compared to basin averaged
ARS measurements at the 5 cm depth and the AMSR-E retrievals.
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  804 
Figure 4: Comparison of basin averaged daily soil moisture from Control, DA, and DA 805 
MassCon, interpolated at 25, 45 and 100 cm depths, with measurements from ARS stations and 806 
the SCAN site.   807 
  808 

Fig. 4. Comparison of basin averaged daily soil moisture from Control, DA, and DA MassCon,
interpolated at 25, 45 and 100 cm depths, with measurements from ARS stations and the SCAN
site.
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 809 

 810 

Figure 5: Mean annual surface soil moisture (soil layer 1) from Control, DA and DA MassCon in 811 
2006 and 2007. 812 

 813 

 814 

 815 
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 817 

 818 

 819 

 820 

 821 

Fig. 5. Mean annual surface soil moisture (soil layer 1) from Control, DA and DA MassCon in
2006 and 2007.
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822 
 Figure 6: Mean root zone (upper 100 cm) soil moisture from Control, DA and DA MassCon in 823 
2006 and 2007. 824 
  825 

Fig. 6. Mean root zone (upper 100 cm) soil moisture from Control, DA and DA MassCon in
2006 and 2007.
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 826 

Figure 7: Comparison of daily latent heat estimates from Control, DA, and DA MassCon versus 827 
the SGP flux data.  The daily latent heat values are averaged values from 6 am to 6 pm local time 828 
for both the SGP measurements and Noah estimates. 829 
 830 

  831 

Fig. 7. Comparison of daily latent heat from Control, DA, and DA MassCon versus the SGP
flux data. The daily latent heat estimates are averaged values from 6 a.m. to 6 p.m. local time
for both the SGP measurements and Noah estimates.
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 832 

 833 
 834 

Figure 8: Monthly surface and base flow (mm) from Control, DA and DA MassCon. 835 
 836 

Fig. 8. Monthly surface and base flow (mm) from Control, DA and DA MassCon.
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 837 

Figure 9: Comparison of monthly total runoff and stream flow from Control, DA and DA 838 
MassCon versus USGS gauge data. 839 
  840 

Fig. 9. Comparison of monthly total runoff and stream flow from Control, DA and DA MassCon
versus USGS gauge data.
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 841 
 842 

 843 

 844 

 Figure 10: Monthly GDAS precipitation and water budget for Control, DA and DA MassCon.  845 Fig. 10. Monthly GDAS precipitation and water budget for Control, DA and DA MassCon.
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